Chapter 1

0.1: Prerequisites

- Take derivatives (chain rule, product rule, quotient rule, power rule, etc.)
- Integrate basic functions (polynomials, exponential, logarithm, trig., etc.)
- Use u-substitution
- Use integration by parts
- Compute $\sin (x), \cos (x)$, and $\tan (x)$ for $x=0, \pi / 2, \pi$
- Recall $\sin ^{2}(u)+\cos ^{2}(u)=1$
- Recall the area of circles, rectangles, and squares
- Recall similar triangles, $y=m x+b$ form, and the $x y$-equation for a circle centered at (a, b).

1.1: Arclength

- Setup the 3 Forms of arclength
(What are they? When should you use each one?)
- Evaluate arclength integrals

Techniques: perfect squares, trig. identities, and u-sub

- Summarize the process of creating the arclength formulas
1.2: Average Values
- Find the average value of a continuous function over a given interval
- Summarize the process of creating the average value formula
- Consider how to find the average value of a positive discontinuous function over a given interval
- Represent the average value of a continuous function geometrically
- State the Mean Value Theorem
(What does it guarantee? Could you summarize it in your own words?)
- Find a c in a given interval so that $f(c)=f_{\text {avg }}$
1.3: Physics Applications
- Find the amount of work done pulling, stretching, compressing a rope or spring along a straight line
- Use Hooke's Law to compute a spring constant.
- Find the amount of work done pumping liquid out of a tank, or above a tank
- Find the amount of pressure due to liquid on a flat object in a tank
- Find the center of mass of a lamina
- Graph the center of mass of a lamina

Exercises:

1. A circle of radius r has the parametric equation $(r \cos (t), r \sin (t))$ for $0 \leq t \leq 2 \pi$.
(a) Find the arclength of the circle with radius r
(b) Compare your equation in part (a) to the circumference of a circle. What do you notice?
2. Let $f(x)=\frac{x^{3}}{6}+\frac{1}{2 x}$. Find the arclength of the curve for $1 \leq x \leq 4$.
3. (a) State all three arclength formulas
(b) Briefly outline the steps you would use to create one of the equations you listed in part (a).
4. Let $f(x)=8 x-x^{2}$ on $[0,4]$
(a) Find $f_{\text {avg }}$.
(b) State the Mean Value Theorem for Integration.
(c) Find a specific c that verifies the Mean Value Theorem for Integration.
5. Let $f(x)=\sin (x)+1$ on $[0,2 \pi]$
(a) Find $f_{\text {avg }}$.
(b) Sketch a picture of $f(x)$. Does your answer in part (a) make sense geometrically? Why?
6. Let $f(x)=e^{2 x}+1$ on $[1,3]$
(a) Find $f_{\text {avg }}$
(b) Find a c in $[1,3]$ so that $f(c)=f_{\text {avg }}$.
7. A rope that weighs $\frac{1}{2} l b / f t$ is used to lift a bucket of water weighing $5 l b s$. from a $12 f t$. well. Find the work done lifting the bucket to the top of the well.
8. A spring whose equilibrium length is $4 m$. extends to a length of $8 m$. when a force of $2 N$ is applied.
True or False: Since $F(x)=k x$ then $2 N=k(8 m$.$) . Then the spring constant is k=\frac{1}{4} N / m$..
9. $2 J$ of work is required to stretch a spring from its natural length of 30 cm to 42 cm . What is the amount of work needed to stretch the spring from 35 cm to 40 cm ?
10. A spring has a natural length of 8 in . A force of $6 l b s$. is required to hold the spring at 12 in . Find the work done stretching the spring from 10in. to 16in..
11. The tank shown is full of water. Given that water weighs $62.4 \mathrm{lb} / f t^{3}$, SETUP an equation to find the work required to pump the water out of a spout located 1 ft . above the tank.

- lower half of a sphere

12. An inverted conical tank (vertex at the bottom) has a radius of 8 m . and height of 30 m . It is filled with 25 m . of water, which has a mass density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. SETUP an equation to find the amount of work used to pump all the water to the top of the tank.

13. A half-circular plate is submerged 8 ft . into a tank filled with water. If the radius of the plate is 5 ft . and water has a weight density of $62.4 \mathrm{lb} / f t^{3}$, SETUP an equation to find the force on one end of the plate. (Figure is shown below)

14. A trough has a vertical cross section of an isosceles triangle that is $4 m$. across and $5 m$. tall. If the trough is filled with to 3 m . with water, SETUP an equation to the force due to water pressure on one end. (Water's mass density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

15. Two identical semicircular windows are placed at the same depth in the vertical wall of an aquarium (see figure).
True or False: Window B will have a greater force due to hydrostatic pressure.

16. Consider the homogeneous lamina bounded by $y=2 \sin (2 x), y=0, x=0$, and $x=\frac{\pi}{2}$.
(a) Find the center of mass
(b) Plot the region and your center of mass on the xy-plane
17. Consider the homogeneous lamina bounded by $y=x^{2}+1, y=0, x=-2$, and $x=2$.
(a) Find the center of mass
(b) Plot the region and your center of mass on the xy-plane
(c) Do you notice anything strange in (b)?

Solutions:

1. (a) $\mathscr{L}=2 \pi r$
(b) The circumference of a circle is $2 \pi r$. This matches our answer from (a). So (the circumference of a circle) $=($ the arclength of a circle)
2. $\left(\frac{4^{3}}{6}-\frac{1}{8}\right)-\left(\frac{1}{6}-\frac{1}{2}\right)$
3. (a) $\mathscr{L}=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
$\mathscr{L}=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
$\mathscr{L}=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
(b) Approximate the curve using straight line segments
\downarrow
Add up the lengths of the segments in the approximation \downarrow
Take infinitley many segments to get the exact length of the curve
4. (a) $f_{\text {avg }}=\frac{32}{3}$
(b) If f is continuous on $[a, b]$, then there exists at least one c in $[a, b]$ so that $f(c)=f_{\text {avg }}$.
(c) $c=1.69$
5. (a) $f_{\text {avg }}=0$
(b) Yes, the function spends an equal amount of time above and below the line $y=1$, so we should expect the average value to be 1 .
6. (a) $f_{\text {avg }}=\frac{e^{6}}{4}+1-\frac{e^{2}}{4}$
(b) $c=\frac{1}{2} \ln \left(\frac{e^{6}}{4}-\frac{e^{2}}{4}\right)$
7. $W=96 \mathrm{ft} \cdot \mathrm{lbs}$.
8. False.

Recall that $x=$ (distance beyond natural length). So we should have: $F(x)=k x$ makes $2 N=k\left(4 m\right.$.) Then the spring constant is $k=\frac{1}{2} N / m$.
9. $W=\frac{4}{(.12)^{2}}\left(\frac{(0.1)^{2}}{2}-\frac{(0.05)^{2}}{2}\right)=1.0417$ (units: J)
10. $W=9\left(\frac{2}{3}\right)^{2}-9\left(\frac{1}{6}\right)^{2}=\frac{15}{4}=3.75$ (units: $f t \cdot l b s$.)
11. - If you set the origin at the top-center of the tank

$$
W=\int_{-5}^{0}(62.4) \pi\left(25-y^{2}\right)(-y+1) d y
$$

- If you set the origin at the bottom-center of the tank

$$
W=\int_{0}^{5}(62.4) \pi\left(25-(y-5)^{2}\right)(6-y) d y
$$

12. - If you set the origin at the top-center of the tank

$$
W=\int_{-30}^{-5}(1000 \cdot 9.8) \pi\left(\frac{8}{30}(30+y)\right)^{2}(-y) d y
$$

- If you set the origin at the bottom-center of the tank

$$
W=\int_{0}^{25}(1000 \cdot 9.8) \pi\left(\frac{8}{30} y\right)^{2}(30-y) d y
$$

13. - If you set the origin at the top-center of the tank

$$
H F=\int_{-13}^{-8}(62.4)\left(2 \sqrt{25-(y+13)^{2}}\right)(-y) d y
$$

- If you set the origin at the center of the circle

$$
H F=\int_{0}^{5}(62.4)\left(2 \sqrt{25-y^{2}}\right)(13-y) d y
$$

14. - If you set the origin at the top-center of the tank

$$
H F=\int_{-5}^{-2}(1000 \cdot 9.8)\left(-\frac{4}{5} y\right)(-y) d y
$$

- If you set the origin at the bottom-center of the tank

$$
H F=\int_{0}^{3}(1000 \cdot 9.8)\left(\frac{4}{5}(5-y)\right)(3-y) d y
$$

15. True. Since pressure varies by depth, that means having more area at the bottom will produce more pressure on the plate. Since Window B will have more pressure being exerted on it, it has a greater force due to hydrostatic pressure.
16. (a) $\mathrm{CoM}=(\bar{x}, \bar{y})=\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$
(b)

17. (a) $\mathrm{CoM}=(\bar{x}, \bar{y})=\left(0, \frac{103}{70}\right) \approx(0,1.47)$

(b)
(c) You should notice that the center of mass is not inside the lamina. That's ok! That just means there is no spot where the lamina balances.
