Determination of a strictly convex and non-trapping Riemannian Manifold from partial travel time data

Ella Pavlechko

August 11th, 2021

NC STATE UNIVERSITY

Manifolds

An n-dimensional smooth manifold is a Hausdorff and second countable topological space, with a maximal atlas,
smooth structure

A smooth manifold without boundary: Each neighborhood is diffeomorphic to a subset of \mathbb{R}^{n}

Examples:

A smooth manifold with boundary: Each neighborhood is diffeomorphic to a subset of the upper-half of \mathbb{R}^{n}.
Examples:

Riemannian Structure

An n-dimensional Riemannian manifold (M, g) is a smooth manifold M equipped with Riemannian metric g.

From g, we get :
$1\langle v, w\rangle_{g}$ for $v, w \in T_{p} M$.
2 $\|v\|_{g}=\sqrt{\langle v, v\rangle_{g}}$.
3 Gradients, Grad f.
4 Geodesics, $\gamma_{p, v}(t)$.
5 Exponential map, $\exp _{p}(v)$.
${ }_{6}$ Distances, $d(p, q)$.

Isometry

$\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be Riemannian manifolds with boundary. An isometry ψ is a diffeomorphism $\psi: M_{1} \rightarrow M_{2}$ such that

$$
\langle v, w\rangle_{g_{1}}=\left\langle\left. d \psi\right|_{p} v,\left.d \psi\right|_{p} w\right\rangle_{g_{2}}, \quad v, w \in T_{p} M
$$

Example:

From the point of view of Riemannian manifolds, two isometric manifolds are the same.

Toy Model for Earthquakes
M is a Riemannian manifold with boundary.
Internal point source wave equation

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-\Delta_{g}\right) u(x, t)=\delta_{p}(x) \delta_{t_{0}}(t), \quad \text { in } M \times \mathbb{R}, \\
u(x, t)=0, \quad t<t_{0}, x \in M,
\end{array}\right.
$$

where Δ_{g} is the Laplace-Beltrami operator of metric g.

Boundary Distance Function

$$
r_{p}: \partial M \rightarrow \mathbb{R}, \quad r_{p}(z)=d(p, z)
$$

Arrival Time

$$
\underbrace{T_{p, t_{0}}(z)}_{\text {measure. }}=\underbrace{r_{p}(z)}_{\text {Known }}+t_{0}^{t_{0}}
$$

Travel Time Data

Let (M, g) be an n-dimensional Riemannian manifold with smooth boundary ∂M and $\Gamma \subset \partial M$ is the boundary measurement region.

Boundary Distance Function

$$
r_{p}: \partial M \rightarrow \mathbb{R}, \quad r_{p}(z)=d(p, z)
$$

Travel Time Data

$$
\Gamma \quad \text { and } \quad\left\{r_{p} \mid \Gamma \in C(\Gamma): p \in M\right\}
$$

Main Goal

Main Question

Is the travel time data enough to determine the isometry class of (M, g) ?

Note: the isometry class is the most we can ask for.

Strictly Convex Boundary Required

The Second Fundamental Form of the boundary is
$I(v, w)=\left\langle n, \nabla_{v} w\right\rangle_{g} n, \quad v, w \in T_{z}(\partial M)$
where ∇ denotes the Levi-Civita connection and $n=n(z)$ is the unit outer normal to the boundary.

The boundary of M is strictly convex if the Second Fundamental Form of the boundary is positive-definite for all $z \in \partial M$.

We must exclude the following case:

This boundary is non-convex

Strictly convex boundary ensures any two points inside the manifold can be connected with a distance minimizing geodesic whose image is contained in the interior of M.

Non-trapping Required

We must exclude the following case:

Define the Exit time function:

$$
\begin{aligned}
& T_{\text {exit }}: S M \rightarrow \mathbb{R} \\
& T_{\text {exit }}(p, v)=\sup \left\{t>0: \gamma_{p, v}(t) \in M\right\} .
\end{aligned}
$$

Impose that the manifold is non-trapping, so that: $T_{\text {exit }}(p, v)<\infty$

This manifold traps geodesics
If the boundary is strictly convex and the manifold is non-trapping then $T_{\text {exit }}$ is smooth on $S M \backslash S(\partial M)$.

Main Theorem

Let $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}) be compact, connected, oriented Riemannian manifolds with smooth boundaries ∂M_{1} and ∂M_{2} and open measurement regions $\Gamma_{i} \subset \partial M_{i}$ respectively.

We say that the travel time data of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ coincide if there exists a diffeomorphism $\phi: \partial M_{1} \rightarrow \partial M_{2}$ such that $\phi\left(\Gamma_{1}\right)=\Gamma_{2}$ and

$$
\left\{\left.\left(r_{x} \circ \phi^{-1}\right)\right|_{\Gamma_{2}}: x \in M_{1}\right\}=\left\{\left.r_{y}\right|_{\Gamma_{2}}: y \in M_{2}\right\}
$$

Main Theorem

If the travel time data of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ coincide, then the Riemannian manifolds M_{1} and M_{2} are isometric.

Previous Works

\qquad Travel Time Data
(a) [Kachalov et al., 2001] and [Kurylev, 1997] consider the full-boundary case, when $\Gamma=\partial M$ on a Riemannian manifold.
(b) [de Hoop et al., 2019] consider the full-boundary case, when $\Gamma=\partial M$ on a compact Finsler manifold.

- Distance Difference Data

Distance Difference Function:

$$
D_{x}\left(z_{1}, z_{2}\right)=T_{x, t_{0}}\left(z_{1}\right)-T_{x, t_{0}}\left(z_{2}\right)=r_{x}\left(z_{1}\right)-r_{x}\left(z_{2}\right) .
$$

(a) [Lassas and Saksala, 2019] consider M as an open subset of the Riemannian manifold N. The distance difference data is then $N \backslash M$ and $\left\{D_{x}: x \in M\right\}$.
\longrightarrow (b) [de Hoop and Saksala, 2019] consider when M is a compact Riemannian manifold satisfying certain visibility conditions.
(c) [Ivanov, 2020a] considers the full-boundary case on a complete Riemannian manifold.

Full Boundary

[Kachalov et al., 2001] considers the full-boundary case, $\Gamma=\partial M . \quad$ Grad $d=\dot{\gamma}$
1 Any point $x_{0} \in M$ can be connected to the nearest boundary point $z_{x_{0}}$ by a geodesic that is normal to the boundary.
2 Then there are neighborhoods $U \subset M$ of x_{0} and $V \subset \partial M$ of $z_{x_{0}}$ with $x \in U$ and $z \in V$ such that
(a) $d(x, z) \in C^{\infty}(U \times V)$
(b) The image of $\left.\operatorname{Grad}_{x} d(x, z)\right|_{x=x_{0}}$, considered as a function of z, is an open set in $S_{x_{0}} M$.

3 If $r_{x_{1}}(z)=r_{x_{2}}(z)$ for all $z \in \partial M$ then $x_{1}=x_{2}$.
This distinguishes points in M.
4 Topological structure from the map $R: x \rightarrow r_{x}$ being an embedding into $C(\partial M)$.
5 Smooth structure from local coordinates for $x_{0} \in M$
(a) For x near $\partial M, x \mapsto\left(d(x, \partial M), z_{x_{0}}\right)$.
(b) For $x \in M^{\text {int }}, x \mapsto\left(d\left(x, z_{1}\right), \ldots, d\left(x, z_{n-1}\right), d\left(x, z_{x_{0}}\right)\right)$.

6 Riemannian structure from metric reconstruction in
 $S_{X_{0}} M$.

Our Approach

Our general approach will follow the proof of [Kachalov et al., 2001].
1 Start at the boundary and work inwards.
Levr (2) Get a smoothness result.
${ }_{3}$ Travel time data distinguishes the points in M.
4 Recover topological structure from the embedding R.
5 Recover smooth local coordinates.
6 Recover Riemannian structure.

Start At The Boundary And Work Inwards
Equivalence of the following sets, for $z \in \Gamma$:

We can find $\left.g\right|_{\ulcorner }$so we will want to be working with $B_{z}(\partial M)$.
(a) We can find the length of any smooth curve in Γ using boundary distance functions.
(b) The lengths of the curves will tell us $g_{i j} \mid \Gamma$.

Cut Locus

R.manifold without boundary, N :

For a point $p \in N$ and $v \in S_{p} N$, $T_{\text {cut }}(p, v)=\sup \left\{t>0: d\left(p, \gamma_{p, v}(t)\right)=t\right\}$. roir isn't distance minimizing $q=\gamma_{p, v}(t)$ is a conjugate point of p along $\gamma_{p, v}$ if $t v$ is a critical point of $\exp _{p}$.

$$
\omega(p)=\left\{q \in N: q=\gamma_{p, v}\left(T_{\text {cut }}(p, v)\right)\right\} .
$$

R.manifold with boundary, M :

For a point $p \in M$ and $v \in S_{p} M$,
$\vec{T}_{\text {cut }}(p, v)=\sup \left\{t>0: d\left(p, \gamma_{p, v}(t)\right)=t\right\}$.
$q=\gamma_{p, v}(t)$ is a conjugate point of p along $\gamma_{p, v}$ if $t v$ is a critical point of $\exp _{p}$.

$$
\operatorname{cut}(p)=? ? ? ?
$$

Cut Locus (2)

R.manifold without boundary, N :

For a point $p \in N$ and $v \in S_{p} N$,

$$
\omega(p)=\left\{q \in N: q=\gamma_{p, v}\left(T_{\text {cut }}(p, v)\right)\right\}
$$

Properties:
1 Conjugate points are 'symmetric'.
2 If $q \in \omega(p)$ then q is either a conjugate point or there are two distance minimizing geodesics from p to q.
$3 d(\cdot, \cdot)$ is smooth outside of $\omega(p)$.

R.manifold with boundary, M :

For a point $p \in M$ and $v \in S_{p} M$,

$$
\begin{aligned}
\operatorname{cut}(p):= & \left\{q \in M: q=\gamma_{p, v}\left(T_{\text {cut }}(p, v)\right),\right. \\
& \text { Symmetry }\left\{\begin{array}{l}
T_{\text {cut }}(p, v)=T_{\text {cut }}(q, w), \\
\left.w=-\dot{\gamma}_{p, v}\left(T_{\text {cut }}(p, v)\right)\right\} .
\end{array}\right.
\end{aligned}
$$

Then:
1 Conjugate points are 'symmetric'.
2 If $T_{\text {cut }}(p, v)<T_{\text {exit }}(p, v)$ and $q \in \operatorname{cut}(p)$ then q is either a conjugate point or there are two distance minimizing geodesics from p to q.
$3 d(\cdot, \cdot)$ is smooth ????

Smoothness

Outside of the cut locus, the distance function should be smooth. Since this has yet to be shown, make the following assumption.

Regularity Assumption

For all $p_{0} \in M$ there exists $z_{0} \in \Gamma$ such that there are neighborhoods $U_{p_{0}}$ of p_{0} and $V_{z_{0}}$ of z_{0} where $F: U_{p_{0}} \times V_{z_{0}} \rightarrow \mathbb{R}$ and $F(p, z)=d(p, z)=r_{p}(z)$ is smooth.

Examples that satisfy all assumptions:
\square Unit disc, D^{1}

- Hemispheres of S^{2}

■ Convex subsets of \mathbb{R}^{n}

- Simple manifolds

Topological Structure

Consider $R: M \rightarrow C(\Gamma)$ so that $R:\left.p \mapsto r_{p}\right|_{\Gamma}$.

- Using the Regularity Assumption, we can separate the data.

$$
\text { For all } p_{1} \text { and } p_{2} \text { in } M \text {, if } r_{p_{1}}(z)=r_{p_{2}}(z) \text { for all } z \in \Gamma \text { then } p_{1}=p_{2}
$$

- This implies the injectivity of R.
- Since the target space has L^{∞} norm, it satisfies the Lipschitz inequality

$$
\left\|r_{p_{1}}-r_{p_{2}}\right\|_{\infty} \leq d\left(p_{1}, p_{2}\right)
$$

so R is continuous.
■ Since M is compact, and R is continuous, then R is a closed map.
Thus, R is a topological embedding.

Smooth Structure

Choose $p_{0} \in M$ and $z_{0} \in \Gamma$ as in the Regularity Assumption. Make a local coordinate system using a function $\phi_{z_{0}}: U_{p_{0}} \rightarrow W \subset T_{z_{0}} M$ such that

where $d_{z} r_{p}$ is the boundary gradient of r_{p}. Observe that

$$
\begin{equation*}
\phi_{z_{0}}^{-1}(v)=\exp _{z_{0}}\left(\left(T_{\text {exit }}\left(z_{0}, \frac{v}{|v|}\right)-|v|\right) \frac{v}{|v|}\right) . \tag{2}
\end{equation*}
$$

Together, equations (1) and (2) make $\phi_{z_{0}}$ a diffeomorphism.

Sigma Sets

From the data we don't know $T_{\text {exit }}(z, v)$. For $v \in B_{z}(\partial M)$,

$$
\begin{gathered}
\sigma(z, v)=\left\{p \in M \mid r_{p}(z) \text { is } C^{1} \text {-smooth in a neighborhood of } z,\right. \\
\left.d_{z} r_{p}(z)=-v\right\} \cup\{z\} .
\end{gathered}
$$

[Lassas and Saksala, 2019] show $\sigma(z, v)$ is the trace of geodesic $\gamma_{z, v}$ until the first cut point.

Theorem

If $\sigma(z, v)$ is closed then $T_{\text {exit }}(z, v)=\sup _{x \in \sigma(z, v)} r_{x}(z)$.
Thus, we can find $T_{\text {exit }}$ in a data-driven manner.

Metric Reconstruction

Using the Regularity Assumption, the image of distance functions is an open set in $S_{p_{0}} M$.

1 Make a basis of n vectors in the open set in $S_{p_{0}} M$.
2 In this subset there is a norm structure.
3 The norm $\|\cdot\|_{g}$ of the unit vectors is 1 in $S_{p_{0}} M$.
4 Using the polarization identity

$$
\begin{aligned}
& \langle v, w\rangle_{g}=\frac{1}{2}\left(\|v\|_{g}+\|w\|_{g}-\|v-w\|_{g}\right) \\
& \text { we have }\langle\cdot, \cdot\rangle_{g}
\end{aligned}
$$

5 This creates the metric g.

\square

Progress

1 Start at the boundary and work inwards.
■ Define proper notion of cut locus.
$? \rightarrow \square$ Get a smoothness result.
3 Travel time data distinguishes the points in M.

4 Recover topological structure from the embedding R.
5 Recover smooth local coordinates.
6 Recover Riemannian structure.

Future Directions

Investigate stability.

■ For two different but 'close' data sets then their isometry classes are 'close'.

- Similar results in [Katsuda et al., 2007] and [Ivanov, 2020b] for full-boundary.
- This may require bounds on the diameter, curvature, and injectivity radius of M or Γ.

Consider Finsler manifold

Finale

Thanks everyone!

NC STATE UNIVERSITY

Any questions?

References I

de Hoop, M. V., Ilmavirta, J., Lassas, M., and Saksala, T. (2019).
Inverse problem for compact Finsler manifolds with the boundary distance map. arXiv preprint arXiv:1901.03902.
de Hoop, M. V. and Saksala, T. (2019).
Inverse problem of travel time difference functions on a compact Riemannian manifold with boundary.
The Journal of Geometric Analysis, 29(4):3308-3327.Ivanov, S. (2020a).
Distance difference functions on non-convex boundaries of Riemannian manifolds.
arXiv preprint arXiv:2008.13153.
Ivanov, S. (2020b).
Distance difference representations of Riemannian manifolds.
Geometriae Dedicata, 207(1):167-192.
品
Kachalov, A., Kurylev, Y., and Lassas, M. (2001).
Inverse boundary spectral problems.
CRC Press.

References II

Katsuda, A., Kurylev, Y., and Lassas, M. (2007).
Stability of boundary distance representation and reconstruction of Riemannian manifolds.
Inverse Problems \& Imaging, 1(1):135.

Kurylev, Y. (1997).
Multidimensional Gel'fand inverse problem and boundary distance map. Inverse Problems Related with Geometry (ed. H. Soga), pages 1-15.
E
Lassas, M. and Saksala, T. (2019).
Determination of a Riemannian manifold from the distance difference functions.
Asian journal of mathematics, 23(2):173-200.

