Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000

Determination of a strictly convex and non-trapping Riemannian Manifold from partial travel time data

Ella Pavlechko

August 11th, 2021

Motivation	Review	Methods	Conclusion
0000000	00	00000000	00000
Riemannian Structure)		

An n-dimensional **Riemannian manifold** (M, g) is a smooth manifold M equipped with Riemannian metric g.

From g, we get :

- $||\mathbf{v}||_g = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle_g}.$
- Gradients, Grad f.
- 4 Geodesics, $\gamma_{p,v}(t)$.
- **5** Exponential map, $exp_p(v)$.
- **6** Distances, d(p, q).

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
Isometry			

 (M_1, g_1) and (M_2, g_2) be Riemannian manifolds with boundary. An **isometry** ψ is a diffeomorphism $\psi : M_1 \to M_2$ such that

$$\langle \mathbf{v}, \mathbf{w} \rangle_{g_1} = \langle \mathbf{d} \psi |_{\mathbf{\rho}} \mathbf{v}, \mathbf{d} \psi |_{\mathbf{\rho}} \mathbf{w} \rangle_{g_2}, \qquad \mathbf{v}, \mathbf{w} \in T_{\mathbf{\rho}} M.$$

Example:

From the point of view of Riemannian manifolds, two isometric manifolds are the same.

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
-			
loy Model for E	arthquakes		

M is a Riemannian manifold with boundary.

Internal point source wave equation

$$\begin{cases} (\partial_t^2 - \Delta_g) u(x, t) = \delta_p(x) \delta_{t_0}(t), & \text{in } M \times \mathbb{R}, \\ u(x, t) = 0, & t < t_0, \ x \in M, \end{cases}$$

where Δ_g is the Laplace-Beltrami operator of metric *g*.

non
С

Let (M, g) be an *n*-dimensional Riemannian manifold with smooth boundary ∂M and $\Gamma \subset \partial M$ is the boundary measurement region.

Boundary Distance Function

 $r_{\rho}: \partial M \to \mathbb{R}, \qquad r_{\rho}(z) = d(\rho, z).$

Travel Time Data

 Γ and $\{r_p|_{\Gamma} \in C(\Gamma) : p \in M\}$

Motivation	Review	Methods	Conclusion
000000000	00	00000000	00000
Main Goal			

Main Question

Is the travel time data enough to determine the isometry class of (M, g)?

Note: the isometry class is the most we can ask for.

Motivation	Review	Methods	Conclusion
000000000	00	00000000	00000
Strictly Convex Bound	arv Required		

The Second Fundamental Form of the boundary is

 $II(v, w) = \langle n, \nabla_v w \rangle_g n, \qquad v, w \in T_z(\partial M)$

where ∇ denotes the Levi-Civita connection and n = n(z) is the unit outer normal to the boundary.

The boundary of *M* is **strictly convex** if the Second Fundamental Form of the boundary is positive-definite for all $z \in \partial M$.

We must exclude the following case:

This boundary is non-convex

Strictly convex boundary ensures any two points inside the manifold can be connected with a distance minimizing geodesic whose image is contained in the interior of M.

Motivation	Review	Methods	Conclusion
000000000	00	00000000	00000
Non-trapping Re	equirea		

We must exclude the following case:

This manifold traps geodesics

Define the Exit time function:

 $T_{exit} : SM \to \mathbb{R}$ $T_{exit}(p, v) = \sup\{t > 0 : \gamma_{p,v}(t) \in M\}.$

Impose that the manifold is non-trapping, so that: $T_{exit}(p, v) < \infty$

If the boundary is strictly convex and the manifold is non-trapping then T_{exit} is smooth on $SM \setminus S(\partial M)$.

Motivation	Review	Methods	Conclusion
0000000	00	00000000	00000
Main Theorem			

Let (M_1, g_1) and (M_2, g_2) be compact, connected, oriented Riemannian manifolds with smooth boundaries ∂M_1 and ∂M_2 and open measurement regions $\Gamma_i \subset \partial M_i$ respectively.

We say that the travel time data of (M_1, g_1) and (M_2, g_2) **coincide** if there exists a diffeomorphism $\phi : \partial M_1 \to \partial M_2$ such that $\phi(\Gamma_1) = \Gamma_2$ and $\{(r_x \circ \phi^{-1})|_{\Gamma_2} : x \in M_1\} = \{r_y|_{\Gamma_2} : y \in M_2\}.$

Main Theorem

If the travel time data of (M_1, g_1) and (M_2, g_2) coincide, then the Riemannian manifolds M_1 and M_2 are isometric.

Motivation	Review	Methods	Conclusion
00000000	igodot	00000000	00000
Previous Works			

Travel Time Data

- (a) [Kachalov et al., 2001] and [Kurylev, 1997] consider the full-boundary case, when $\Gamma = \partial M$ on a Riemannian manifold.
- (b) [de Hoop et al., 2019] consider the full-boundary case, when $\Gamma = \partial M$ on a compact Finsler manifold.
- Distance Difference Data

Distance Difference Function:

 $D_x(z_1, z_2) = T_{x,t_0}(z_1) - T_{x,t_0}(z_2) = r_x(z_1) - r_x(z_2).$

- (a) [Lassas and Saksala, 2019] consider *M* as an open subset of the Riemannian manifold *N*. The distance difference data is then $N \setminus M$ and $\{D_x : x \in M\}$.
- (b) [de Hoop and Saksala, 2019] consider when *M* is a compact Riemannian manifold satisfying certain visibility conditions.
 - (c) [Ivanov, 2020a] considers the full-boundary case on a complete Riemannian manifold.

21

Motivation	Review ○●	Methods	Conclusion
Full Boundary			
[Kachalov et al.,	2001] considers the full-b	boundary case, $\Gamma = \partial M$.	Grad $d = \dot{v}$
Any point $x_0 \in$ boundary point boundary. Then there ar $V \subset \partial M$ of z_x (a) $d(x, z) \in$ (b) The image of z , is an	E <i>M</i> can be connected to that z_{x_0} by a geodesic that is e neighborhoods $U \subset M$ of $C^{\infty}(U \times V)$ of $Grad_x d(x, z) _{x=x_0}$, consider open set in $S_{x_0}M$.	the nearest is normal to the of x_0 and uch that dered as a function	×2 ×1 ×1
If $r_{x_1}(z) = r_{x_2}$ This distinguis	(z) for all $z \in \partial M$ then x_1 shes points in M .	$= x_2.$	Z _{×o}
Topological st embedding in	ructure from the map R : to $C(\partial M)$.	$x \to r_x$ being an	Sxo M
5 Smooth struct (a) For x near (b) For $x \in M$	the from local coordinates $\partial M, x \mapsto (d(x, \partial M), z_{x_0}).$ $f^{int}, x \mapsto (d(x, z_1),, d(x, z_1))$	s for $x_0 \in M$ ($n-1$), $d(x, z_{x_0})$).	
Riemannian s	tructure from metric recor	nstruction in	Zxo

6 Riemannian structure from metric reconstruction in $S_{x_0}M$.

Motivation	Review	Methods	Conclusion
00000000	00	●00000000	00000
Our Approach			

Our general approach will follow the proof of [Kachalov et al., 2001].

- **1** Start at the boundary and work inwards.
- Get a smoothness result.
 - **3** Travel time data distinguishes the points in *M*.
 - A Recover topological structure from the embedding *R*.
 - 5 Recover smooth local coordinates.
 - 6 Recover Riemannian structure.

Equivalence of the following sets, for $z \in \Gamma$:

We can find $g|_{\Gamma}$ so we will want to be working with $B_z(\partial M)$.

- (a) We can find the length of any smooth curve in Γ using boundary distance functions.
- (b) The lengths of the curves will tell us $g_{ij}|_{\Gamma}$.

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
Cut Locus (2)			

R.manifold without boundary, *N*:

For a point $p \in N$ and $v \in S_p N$,

$$\omega(p) = \{q \in \mathsf{N} : q = \gamma_{p,v}(\mathsf{T}_{cut}(p,v))\}.$$

Properties:

- Conjugate points are 'symmetric'.
- 2 If $q \in \omega(p)$ then q is either a conjugate point or there are two distance minimizing geodesics from p to q.
- 3 $d(\cdot, \cdot)$ is smooth outside of $\omega(p)$.

R.manifold with boundary, *M*:

For a point $p \in M$ and $v \in S_p M$,

$$cut(p) := \{q \in M : q = \gamma_{p,v}(T_{cut}(p,v)), \\ \mathsf{Support}_{v} \left\{ \begin{array}{l} T_{cut}(p,v) = T_{cut}(q,w), \\ w = -\dot{\gamma}_{p,v}(T_{cut}(p,v)) \}. \end{array} \right.$$

Then:

- **1** Conjugate points are 'symmetric'.
- 2 If $T_{cut}(p, v) < T_{exit}(p, v)$ and $q \in cut(p)$ then q is either a conjugate point or there are two distance minimizing geodesics from p to q.

where

3
$$d(\cdot, \cdot)$$
 is smooth ????

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
Cmaathnaaa			
Smoothness			

Outside of the cut locus, the distance function should be smooth. Since this has yet to be shown, make the following assumption.

Regularity Assumption

For all $p_0 \in M$ there exists $z_0 \in \Gamma$ such that there are neighborhoods U_{p_0} of p_0 and V_{z_0} of z_0 where $F : U_{p_0} \times V_{z_0} \to \mathbb{R}$ and $F(p, z) = d(p, z) = r_p(z)$ is smooth.

Examples that satisfy all assumptions:

- Unit disc, D¹
- Hemispheres of S²
- Convex subsets of \mathbb{R}^n
- Simple manifolds

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
Topological Strue	cture		

Consider $R: M \to C(\Gamma)$ so that $R: p \mapsto r_p|_{\Gamma}$.

Using the Regularity Assumption, we can separate the data.

For all p_1 and p_2 in M, if $r_{p_1}(z) = r_{p_2}(z)$ for all $z \in \Gamma$ then $p_1 = p_2$.

This implies the injectivity of *R*.

Since the target space has L^{∞} norm, it satisfies the Lipschitz inequality

$$\|r_{p_1} - r_{p_2}\|_{\infty} \leq d(p_1, p_2),$$

so *R* is continuous.

■ Since *M* is compact, and *R* is continuous, then *R* is a closed map.

Thus, *R* is a topological embedding.

Motivation	Review	Methods	Conclusion
00000000	00	000000000	00000
Smooth Structu	lre		

Choose $p_0 \in M$ and $z_0 \in \Gamma$ as in the Regularity Assumption. Make a local coordinate system using a function $\phi_{z_0} : U_{p_0} \to W \subset T_{z_0}M$ such that

$$\phi_{z_0}(p) = (d_z r_p(z_0), \underbrace{T_{exit}(z_0, d_z r_p(z_0)) - r_p(z_0)}_{f(p)}) \quad (1)$$
where $d_z r_p$ is the boundary gradient of r_p . Observe that
$$\phi_{z_0}^{-1}(v) = \exp_{z_0}\left(\left(T_{exit}(z_0, \frac{v}{|v|}) - |v|\right) \frac{v}{|v|}\right). \quad (2)$$

Together, equations (1) and (2) make ϕ_{z_0} a diffeomorphism.

Motivation	Review	Methods	Conclusion
00000000	00	000000000	00000
Sigma Sets			

From the data we don't know $T_{exit}(z, v)$. For $v \in B_z(\partial M)$,

 $\sigma(z, v) = \{ p \in M \mid r_p(z) \text{ is } C^1 \text{-smooth in a neighborhood of } z, \\ d_z r_p(z) = -v \} \cup \{z\}.$

[Lassas and Saksala, 2019] show $\sigma(z, v)$ is the trace of geodesic $\gamma_{z,v}$ until the first cut point.

Theorem

If
$$\sigma(z, v)$$
 is closed then $T_{exit}(z, v) = \sup_{x \in \sigma(z, v)} r_x(z)$.

Thus, we can find T_{exit} in a data-driven manner.

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
Metric Reconstru	uction		

Using the Regularity Assumption, the image of distance functions is an open set in $S_{p_0}M$.

- 1 Make a basis of *n* vectors in the open set in $S_{p_0}M$.
- 2 In this subset there is a norm structure.
- 3 The norm $\|\cdot\|_g$ of the unit vectors is 1 in $S_{p_0}M$.
- 4 Using the polarization identity $\langle v, w \rangle_g = \frac{1}{2}(||v||_g + ||w||_g - ||v - w||_g),$ we have $\langle \cdot, \cdot \rangle_g$.
- **5** This creates the metric g.

Motivation	Review	Methods	Conclusion
00000000	00	00000000	●○○○○
Progress			

Start at the boundary and work inwards.
Define proper notion of cut locus.
Get a smoothness result.
Travel time data distinguishes the points in *M*.
Recover topological structure from the embedding *R*.
Recover smooth local coordinates.
Recover Riemannian structure.

	Review	Methods	Conclusion
Future Directions			

Investigate stability.

- For two different but 'close' data sets then their isometry classes are 'close'.
- Similar results in [Katsuda et al., 2007] and [Ivanov, 2020b] for full-boundary.
- This may require bounds on the diameter, curvature, and injectivity radius of *M* or Γ.

Consider Finsler manifold

Motivation	Review	Methods	Conclusion
	OO	00000000	○○●○○
Finale			

Thanks everyone!

Any questions?

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
References I			

			•
-			e
	-	-	
	_		۰.
		-	

de Hoop, M. V., Ilmavirta, J., Lassas, M., and Saksala, T. (2019). Inverse problem for compact Finsler manifolds with the boundary distance map. *arXiv preprint arXiv:1901.03902*.

de Hoop, M. V. and Saksala, T. (2019).

Inverse problem of travel time difference functions on a compact Riemannian manifold with boundary.

The Journal of Geometric Analysis, 29(4):3308–3327.

Ivanov, S. (2020a).

Distance difference functions on non-convex boundaries of Riemannian manifolds.

arXiv preprint arXiv:2008.13153.

Ivanov, S. (2020b).

Distance difference representations of Riemannian manifolds. *Geometriae Dedicata*, 207(1):167–192.

Kachalov, A., Kurylev, Y., and Lassas, M. (2001). *Inverse boundary spectral problems*. CRC Press.

Motivation	Review	Methods	Conclusion
00000000	00	00000000	00000
References II			

Katsuda, A., Kurylev, Y., and Lassas, M. (2007).

Stability of boundary distance representation and reconstruction of Riemannian manifolds.

Inverse Problems & Imaging, 1(1):135.

Kurylev, Y. (1997).

Multidimensional Gel'fand inverse problem and boundary distance map. Inverse Problems Related with Geometry (ed. H. Soga), pages 1–15.

Lassas, M. and Saksala, T. (2019).

Determination of a Riemannian manifold from the distance difference functions. *Asian journal of mathematics*, 23(2):173–200.