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Manifolds

An n-dimensional smooth manifold is a Hausdorff and second countable topological
space, with a maximal atlas.

A smooth manifold without boundary:
Each neighborhood is diffeomorphic to a
subset of Rn

Examples:

A smooth manifold with boundary:
Each neighborhood is diffeomorphic to a
subset of the upper-half of Rn.

Examples:
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Riemannian Structure

An n-dimensional Riemannian manifold (M, g) is a smooth manifold M equipped with
Riemannian metric g.

From g, we get :
1 hv ,wig for v ,w 2 TpM.

2 kvkg =
p

hv , vig .
3 Gradients, Grad f .
4 Geodesics, �p,v (t).
5 Exponential map, expp(v).
6 Distances, d(p, q).
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Isometry

(M1, g1) and (M2, g2) be Riemannian manifolds with boundary. An isometry  is a
diffeomorphism  : M1 ! M2 such that

hv ,wig1 = hd |pv , d |pwig2 , v ,w 2 TpM.

Example:

From the point of view of Riemannian manifolds, two isometric manifolds are the same.
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Toy Model for Earthquakes

M is a Riemannian manifold with boundary.

Internal point source wave equation
(
(@2

t
��g)u(x , t) = �p(x)�t0 (t), in M ⇥ R,

u(x , t) = 0, t < t0, x 2 M,

where �g is the Laplace-Beltrami operator of metric g.

Boundary Distance Function

rp : @M ! R, rp(z) = d(p, z).

Arrival Time

Tp,t0 (z) = rp(z) + t0
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Travel Time Data

Let (M, g) be an n-dimensional Riemannian manifold with smooth boundary @M and
� ⇢ @M is the boundary measurement region.

Boundary Distance Function

rp : @M ! R, rp(z) = d(p, z).

Travel Time Data

� and {rp|� 2 C(�) : p 2 M}
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Main Goal

Main Question

Is the travel time data enough to determine the isometry class of
(M, g)?

Note: the isometry class is the most we can ask for.
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Strictly Convex Boundary Required

The Second Fundamental Form of the
boundary is

II(v ,w) = hn,rv wign, v ,w 2 Tz(@M)

where r denotes the Levi-Civita
connection and n = n(z) is the unit outer
normal to the boundary.

The boundary of M is strictly convex if the
Second Fundamental Form of the
boundary is positive-definite for all z 2 @M.

We must exclude the following case:

This boundary is non-convex

Strictly convex boundary ensures any two points inside the manifold
can be connected with a distance minimizing geodesic whose image
is contained in the interior of M.
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Non-trapping Required

We must exclude the following case:

This manifold traps geodesics

Define the Exit time function:

Texit : SM ! R
Texit (p, v) = sup{t > 0 : �p,v (t) 2 M}.

Impose that the manifold is non-trapping,
so that: Texit (p, v) < 1

If the boundary is strictly convex and the manifold is non-trapping then
Texit is smooth on SM \ S(@M).
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Main Theorem

Let (M1, g1) and (M2, g2) be compact, connected, oriented Riemannian manifolds with
smooth boundaries @M1 and @M2 and open measurement regions �i ⇢ @Mi

respectively.

We say that the travel time data of (M1, g1) and (M2, g2) coincide if
there exists a diffeomorphism � : @M1 ! @M2 such that �(�1) = �2
and

{(rx � ��1)|�2 : x 2 M1} = {ry |�2 : y 2 M2}.

Main Theorem

If the travel time data of (M1, g1) and (M2, g2) coincide, then the Riemannian manifolds
M1 and M2 are isometric.
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Previous Works

Travel Time Data
(a) [Kachalov et al., 2001] and [Kurylev, 1997] consider the full-boundary case, when

� = @M on a Riemannian manifold.
(b) [de Hoop et al., 2019] consider the full-boundary case, when � = @M on a compact

Finsler manifold.

Distance Difference Data

Distance Difference Function:
Dx (z1, z2) = Tx,t0 (z1)� Tx,t0 (z2) = rx (z1)� rx (z2).

(a) [Lassas and Saksala, 2019] consider M as an open subset of the Riemannian manifold
N. The distance difference data is then N \ M and {Dx : x 2 M}.

(b) [de Hoop and Saksala, 2019] consider when M is a compact Riemannian manifold
satisfying certain visibility conditions.

(c) [Ivanov, 2020a] considers the full-boundary case on a complete Riemannian manifold.
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Full Boundary

[Kachalov et al., 2001] considers the full-boundary case, � = @M.

1 Any point x0 2 M can be connected to the nearest
boundary point zx0 by a geodesic that is normal to the
boundary.

2 Then there are neighborhoods U ⇢ M of x0 and
V ⇢ @M of zx0 with x 2 U and z 2 V such that

(a) d(x, z) 2 C
1(U ⇥ V )

(b) The image of Gradx d(x, z)|x=x0 , considered as a function
of z, is an open set in Sx0 M.

3 If rx1 (z) = rx2 (z) for all z 2 @M then x1 = x2.
This distinguishes points in M.

4 Topological structure from the map R : x ! rx being an
embedding into C(@M).

5 Smooth structure from local coordinates for x0 2 M

(a) For x near @M, x 7! (d(x, @M), zx0 ).
(b) For x 2 M

int , x 7! (d(x, z1), ..., d(x, zn�1), d(x, zx0 )).

6 Riemannian structure from metric reconstruction in
Sx0 M.
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Our Approach

Our general approach will follow the proof of [Kachalov et al., 2001].
1 Start at the boundary and work inwards.
2 Get a smoothness result.
3 Travel time data distinguishes the points in M.
4 Recover topological structure from the embedding R.
5 Recover smooth local coordinates.
6 Recover Riemannian structure.
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Start At The Boundary And Work Inwards

Equivalence of the following sets, for z 2 �:

(SzM)in = {v 2 TzM : hv , nig < 0, |v |g = 1}, Bz(@M) = {w 2 Tz@M : |w |g < 1}

We can find g|� so we will want to be working with Bz(@M).
(a) We can find the length of any smooth curve in � using boundary distance

functions.
(b) The lengths of the curves will tell us gij |�.
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Cut Locus

R.manifold without boundary, N:

For a point p 2 N and v 2 SpN,

Tcut (p, v) = sup{t > 0 : d(p, �p,v (t)) = t}.

q = �p,v (t) is a conjugate point of p along
�p,v if tv is a critical point of expp .

!(p) = {q 2 N : q = �p,v (Tcut (p, v))}.

R.manifold with boundary, M:

For a point p 2 M and v 2 SpM,

Tcut (p, v) = sup{t > 0 : d(p, �p,v (t)) = t}.

q = �p,v (t) is a conjugate point of p along
�p,v if tv is a critical point of expp .

cut(p) =????
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Cut Locus (2)

R.manifold without boundary, N:

For a point p 2 N and v 2 SpN,

!(p) = {q 2 N : q = �p,v (Tcut (p, v))} .

Properties:
1 Conjugate points are ‘symmetric’.

2 If q 2 !(p) then q is either a conjugate
point or there are two distance
minimizing geodesics from p to q.

3 d(·, ·) is smooth outside of !(p).

R.manifold with boundary, M:

For a point p 2 M and v 2 SpM,

cut(p) := {q 2 M : q = �p,v (Tcut (p, v)),

Tcut (p, v) = Tcut (q,w),

w = ��̇p,v (Tcut (p, v))}.

Then:
1 Conjugate points are ‘symmetric’.

2 If Tcut (p, v) < Texit (p, v) and
q 2 cut(p) then q is either a conjugate
point or there are two distance
minimizing geodesics from p to q.

3 d(·, ·) is smooth ????
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Smoothness

Outside of the cut locus, the distance function should be smooth. Since this has yet to
be shown, make the following assumption.

Regularity Assumption

For all p0 2 M there exists z0 2 � such that there are neighborhoods Up0 of p0 and Vz0
of z0 where F : Up0 ⇥ Vz0 ! R and F (p, z) = d(p, z) = rp(z) is smooth.

Examples that satisfy all assumptions:
Unit disc, D1

Hemispheres of S2

Convex subsets of Rn

Simple manifolds
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Topological Structure

Consider R : M ! C(�) so that R : p 7! rp|�.
Using the Regularity Assumption, we can separate the data.

For all p1 and p2 in M, if rp1 (z) = rp2 (z) for all z 2 � then p1 = p2.

This implies the injectivity of R.
Since the target space has L1 norm, it satisfies the Lipschitz inequality

krp1 � rp2k1  d(p1, p2),

so R is continuous.
Since M is compact, and R is continuous, then R is a closed map.

Thus, R is a topological embedding.
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Smooth Structure

Choose p0 2 M and z0 2 � as in the Regularity Assumption. Make a local coordinate
system using a function �z0 : Up0 ! W ⇢ Tz0 M such that

�z0 (p) = (dzrp(z0),Texit (z0, dzrp(z0))� rp(z0)| {z }
f (p)

) (1)

where dzrp is the boundary gradient of rp . Observe that

��1
z0

(v) = expz0

✓✓
Texit (z0,

v

|v |
)� |v |

◆
v

|v |

◆
. (2)

Together, equations (1) and (2) make �z0 a diffeomorphism.
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Sigma Sets

From the data we don’t know Texit (z, v). For v 2 Bz(@M),

�(z, v) = {p 2 M | rp(z) is C
1-smooth in a neighborhood of z,

dzrp(z) = �v} [ {z}.

[Lassas and Saksala, 2019] show �(z, v) is the trace of geodesic
�z,v until the first cut point.

Theorem

If �(z, v) is closed then Texit (z, v) = sup
x2�(z,v)

rx (z).

Thus, we can find Texit in a data-driven manner.
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Metric Reconstruction

Using the Regularity Assumption, the image of distance functions is an open set in
Sp0 M.

1 Make a basis of n vectors in the open
set in Sp0 M.

2 In this subset there is a norm
structure.

3 The norm k · kg of the unit vectors is 1
in Sp0 M.

4 Using the polarization identity
hv ,wig = 1

2 (kvkg +kwkg �kv�wkg),
we have h·, ·ig .

5 This creates the metric g.
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Progress

1 Start at the boundary and work inwards.
Define proper notion of cut locus.

2 Get a smoothness result.
3 Travel time data distinguishes the points in M.
4 Recover topological structure from the embedding R.
5 Recover smooth local coordinates.
6 Recover Riemannian structure.
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Future Directions

Investigate stability.
For two different but ‘close’ data sets then their isometry classes are ‘close’.
Similar results in [Katsuda et al., 2007] and [Ivanov, 2020b] for full-boundary.
This may require bounds on the diameter, curvature, and injectivity radius of M or
�.

Consider Finsler manifold
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Finale

Thanks everyone!

Any questions?
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