Directions: Show all work in a clear/logical manner and justify all conclusions in order to receive full credit. Number all questions, including parts, and box your final answers.
No calculators, collaboration with other students, notes, or internet usage is allowed.

1. Does the sequence $\left(\frac{n!}{(n+2)!}\right)_{n=1}^{\infty}$ converge? If so, what does it converge to?
2. Do the following series converge or diverge? If it converges, state where it converges to.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5^{n-1}}{3^{n-2}}$
(b) $\sum_{n=1}^{\infty}\left(\frac{3}{n+3}-\frac{3}{n+4}\right)$
3. Decide which test for convergence is appropriate and then use it to determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{4 n^{2}-n}{n^{3}+9}$
(b) $\left\{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots\right\}$
4. (a) Determine if $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2^{n}+3^{n}}$ converges or diverges using the Alternating Series Test.
(b) Approximate the series using the first 4 terms
(c) Estimate the error
5. (a) Determine if $\sum_{n=1}^{\infty} \frac{1}{(2 n+7)^{3}}$ converges or diverges using the Integral Test.
(b) Determine the least value of k such that R_{k} is less than $\frac{1}{784}$.
6. Determine if the following series converge absolutely, converge conditionally, or diverge:
(a) $\sum_{n=1}^{\infty} \frac{8^{n}}{(n+1) 5^{2 n-1}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+4}}$
7. Consider the power series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{6^{n}\left(n^{3}+1\right)}$
(a) What is the interval of convergence?
(b) What is the radius of convergence?
(c) What is the center of the power series?
(\#1) Note: $\left(\frac{n!}{(n+2)!}\right)_{n=1}^{\infty}$ is a sequence Not a series!

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n!}{(n+2)!} & =\lim _{n \rightarrow \infty} \frac{n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 2 \cdot 1}{(n+2)(n+1) x(n-1) \cdots 3 \cdot 2 \cdot x} \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+2)(n+1)} \\
& =0
\end{aligned}
$$

so the sequence converges to 0 .
$\# 2$

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5^{n-1}}{3^{n-2}} & =\sum_{n=1}^{\infty}(-1)^{n-1}(-1)^{2} \frac{5^{n-1}}{3^{n-1} 3^{-1}} \\
& =\sum_{n=1}^{\infty}(-1)^{2} \frac{1}{3^{-1}}\left(-\frac{5}{3}\right)^{n-1} \\
& =\sum_{n=1}^{\infty} 3\left(-\frac{5}{3}\right)^{n-1}
\end{aligned}
$$

Geometric Series, $a=3, r=-\frac{5}{3}$
Since $|r|=\left|-\frac{5}{3}\right|>1$ this series
diverges

$$
\begin{aligned}
\text { b) } & \sum_{n=1}^{\infty}\left(\frac{3}{n+3}-\frac{3}{n+4}\right) \quad \text { telescoping? } \\
S_{k} & =\left(\frac{3}{4}-\frac{3}{5}\right)+\left(\frac{3}{5}-\frac{3}{6}\right)+\cdots+\left(\frac{3 /}{k+2}-\frac{3}{k+3}\right)+\left(\frac{3}{k+3}-\frac{3}{k+4}\right) \\
& =\frac{3}{4}-\frac{3}{k+4}
\end{aligned}
$$

$$
\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} \frac{3}{4}-\frac{3}{k+4}=\frac{3}{4}
$$

The series converges to $\frac{3}{4}$.
(4) a) $\sum_{n=1}^{\infty} \frac{4 n^{2}-n}{n^{3}+9}$

Limit comparison Test with $\sum_{n=1}^{\infty} \frac{4 n^{2}}{n^{3}}=\sum_{n=1}^{\infty} \frac{4}{n} \leftarrow$ Harmonic diverges

$$
\frac{4 n^{2}-n}{n^{3}+9}=\frac{\overbrace{(4 n-1)}^{\oplus}}{\underbrace{n^{3}+9}_{\oplus}} \text { so it's positive } \begin{gathered}
\text { for } n \geq 1
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} \frac{\left(\frac{4 n^{2}-n}{n^{3}+9}\right)}{\left(\frac{4}{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(4 n^{2}-n\right) n}{4\left(n^{3}+9\right)}=1
$$

since $1<\infty$, by the Limit Comparison Test this series diverges
Note: You wouldn't be able to draw conclusions from Direct Comparison Test on this series.

$$
\text { b) }\left\{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots\right\}=\sum_{n=1}^{\infty} \frac{n}{n+1}
$$

Divergence Test

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \neq 0
$$

This series diverges using the Divergence Test
(4) a) $c_{n}=\frac{1}{2^{n}+3^{n}}$

$$
\frac{1}{2^{1}+3^{1}}>\frac{1}{2^{2}+3^{2}}+\frac{1}{2^{3}+3^{3}}+\cdots
$$

So C_{n} is decreasing

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}+3^{n}}=0
$$

By the Alternating Series Test, this converges
b)

$$
S_{4}=\sum_{n=1}^{4}(-1)^{n} \frac{1}{2^{n}+3^{n}}=\frac{\frac{1}{2^{1}+3^{1}}+\frac{1}{2^{2}+3^{2}}+\frac{1}{2^{3}+3^{3}}+\frac{1}{2^{4}+3^{4}}}{\begin{array}{c}
\text { Dort need to } \\
\text { plug this into } \\
\text { calculator }
\end{array}}
$$

c)

$$
\begin{aligned}
& \left|R_{N}\right| \leq C_{N+1} \\
& \left|R_{4}\right| \leq C_{5}=\frac{1}{2^{5}+3^{5}}
\end{aligned}
$$

(\#5) $\sum_{n=1}^{\infty} \frac{1}{(2 n+7)^{3}}$
a) $\int_{1}^{\infty} \frac{1}{(2 x+7)^{3}} d x$

$$
\begin{aligned}
& \quad \begin{array}{c}
u=2 x+7 \\
d u=2 d x \\
\frac{1}{2} d u=d x
\end{array} \left\lvert\, \begin{array}{c}
\text { when } x=\infty \\
u=2(\infty)+7=\infty \\
\text { when } x=1 \\
u=2(1)+7=9
\end{array}\right. \\
& =\int_{9}^{\infty} \frac{1}{u^{3}} \frac{1}{2} d u \\
& =\frac{1}{2} \lim _{t \rightarrow \infty} \int_{9}^{t} u^{-3} d u \\
& =\frac{1}{2} \lim _{t \rightarrow \infty}\left[\frac{u^{-2}}{-2}\right]_{a}^{t} \\
& =\frac{-1}{4}\left(\lim _{t \rightarrow \infty} t^{-2}-9-2\right)^{t} \\
& =\frac{-1}{4}\left(0-\frac{1}{81}\right)=\frac{1}{4}\left(\frac{1}{81}\right)=\frac{1}{324}
\end{aligned}
$$

since $\int_{1}^{\infty} \frac{1}{(2 x+7)^{3}} d x$ converges, by the integral test, $\sum_{n=1}^{\infty} \frac{1}{(2 n+7)^{3}}$ converges.
b)

$$
\text { b) } \begin{aligned}
& \int_{k+1}^{\infty} \frac{1}{(2 x+7)^{3}} d x \leq R_{k} \leq \int_{k}^{\infty} \frac{1}{(2 x+7)^{3}} d x<\frac{1}{784} \\
&\left.\right|_{\begin{array}{c}
\text { wing the } \\
\text { work from } \\
\text { part) } \\
u=2 x+7
\end{array}} \sim \frac{1}{784} \\
& \frac{1}{2} \lim _{t \rightarrow \infty}\left[\frac{u^{-2}}{-2}\right]_{2 k+7}<\frac{1}{78} \\
& \frac{-\frac{1}{4}\left(\lim _{t \rightarrow \infty} t^{-2}-(2 k+7)^{-2}\right)}{}<\frac{1}{784} \\
& \frac{1}{4}\left(\frac{1}{\left.(2 k+7)^{2}\right)}\right.<\frac{1}{784} \\
& \frac{1}{(2 k+7)^{2}}<\frac{4}{784}=\frac{1}{196} \\
&2 k+7)^{2}>196 \\
& 2 k>14-7 \\
& k>3.5
\end{aligned}
$$

so $K=4$ makes $R_{k}<\frac{1}{784}$.
(\#6) a) $\sum_{n=1}^{\infty} \frac{8^{n}}{(n+1) 5^{2 n-1}}$
Ratio Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{\frac{8^{n+1}}{(n+2) 5^{2(n+1)-1}}}{\frac{8^{n}}{(n+1) 5^{2 n-1}}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{8^{n+1} 5^{2 n-1}(n+1)}{(n+2) 5^{2 n+1} 8^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{8(n+1)}{(n+2) 5^{2}}\right| \\
& =\frac{8}{5^{2}}=\frac{8}{25}
\end{aligned}
$$

since $\frac{8}{25}<1$ this series
converges absolutely by the Ratio test.
(ab) Check $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n^{2}+4}}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+4}}$
Limit Comparison with $\sum_{n=1}^{\infty} \frac{1}{n} \leftarrow \begin{gathered}\text { Harmonic } \\ \text { series }\end{gathered}$ series diverges. $\frac{1}{\sqrt{n^{2}+4}}$ is positive for $n \geq 1$

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{2}+4}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+4}}=1
$$

since $\quad 1 \neq \pm \infty$ the $\sum\left|\frac{(-1)^{n}}{\sqrt{n^{2}+4}}\right|$ diverges using Limit Comparison Test Alternating Series Test with $C_{n}=\frac{1}{\sqrt{n^{2}+4}}$

$$
\frac{1}{\sqrt{1+4}}>\frac{1}{\sqrt{4+4}}>\frac{1}{\sqrt{9+4}}>\cdots
$$

so decreasing

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+4}}=0
$$

so the series converges by Alternating series Test.
Thus, the series is conditionally. convergent
\#7

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\begin{array}{rl}
\left|\frac{\frac{(x-1)^{n+1}}{6^{n+1}\left((n+1)^{3}+1\right)}}{\frac{x^{n}}{6^{n}\left(n^{3}+1\right)}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1} 6^{n}\left(n^{3}+1\right)}{6^{n+1}\left((n+1)^{3}+1\right) x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(x-1)\left(n^{3}+1\right)}{6\left((n+1)^{3}+1\right)}\right| \\
& =\mid x-1 \\
\mid
\end{array}\right|
\end{aligned}
$$

a) $\left|\frac{x-1}{u}\right|<1$

$$
\begin{array}{r}
|x-1|<6 \\
-6<x-1<6 \\
-5<x<7
\end{array}
$$

when $x=7: \sum_{n=1}^{\infty} \frac{6^{n}}{6^{n}\left(n^{3}+1\right)}=\sum \frac{1}{n^{3}+1}$
Direct comparison with $\sum \frac{1}{n^{3}}$

$$
\frac{1}{n^{3}+1} \text { is positive }
$$

convergent p-series
since $n^{3}+1 \geq n^{3}$

$$
\frac{1}{n^{3}+1} \leq \frac{1}{n^{3}}
$$

so this converges by Direct Comparison Test
when $x=5: \sum_{n=1}^{\infty} \frac{(-6)^{n}}{6^{n}\left(n^{3}+1\right)}=\sum \frac{(-1)^{n}}{n^{3}+1}$
Absolute Convergence Test
since $\sum\left|\frac{(-1)^{2}}{n^{3}+1}\right|=\sum \frac{1}{n^{3}+1}$ converges
then, $\sum \frac{(-1)^{n}}{n^{3}+1}$ converges by absolute convergence
Interval of Convergence: $[-5,7]$
b) $\overparen{R}=6$
c) center: 1

