
MA 241: Exam 4 Practice exam
This exam is worth a total of 100 points.

Directions: Show all work in a clear/logical manner and justify all conclusions in order to receive full
credit. Number all questions, including parts, and box your final answers.
No calculators, collaboration with other students, notes, or internet usage is allowed.

1. 7Does the sequence
(

n!

(n+ 2)!

)∞

n=1

converge? If so, what does it converge to?

2. 16Do the following series converge or diverge? If it converges, state where it converges to.

(a)
∞∑
n=1

(−1)n+1 5
n−1

3n−2

(b)
∞∑
n=1

(
3

n+ 3
− 3

n+ 4

)
3. 16Decide which test for convergence is appropriate and then use it to determine whether the

series is convergent or divergent.

(a)
∞∑
n=1

4n2 − n

n3 + 9

(b)
{
1
2 + 2

3 + 3
4 + ...

}
4. 15(a) Determine if

∞∑
n=1

(−1)n
1

2n + 3n
converges or diverges using the Alternating Series Test.

(b) Approximate the series using the first 4 terms
(c) Estimate the error

5. 15(a) Determine if
∞∑
n=1

1

(2n+ 7)3
converges or diverges using the Integral Test.

(b) Determine the least value of k such that Rk is less than 1
784 .

6. 16Determine if the following series converge absolutely, converge conditionally, or diverge:

(a)
∞∑
n=1

8n

(n+ 1)52n−1

(b)
∞∑
n=1

(−1)n√
n2 + 4

7. 15Consider the power series
∞∑
n=1

(x− 1)n

6n(n3 + 1)

(a) What is the interval of convergence?
(b) What is the radius of convergence?
(c) What is the center of the power series?
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