Final Exam (with exercises for 4.7-4.9)

Be able to take all previous tests without error! For more details, see each Chapter's Study Guide.

Chapter 0: Calc 1 Review

- Derivatives
- U-substitution
- Integration by Parts

Chapter 1: Applications of Integration

- Arclength

Know the 3 formulas and when to apply them. Use perfect squares or u-sub to evaluate.

- Average Value

Compute $f_{\text {avg. }}$. Use Mean Value Theorem for Integration to find c so that $f(c)=f_{\text {avg }}$.

- Rope/Chain Pulling

Find the amount of work done pulling a rope/chain from a to b.

- Springs

Find the work done stretching a spring from a to b.

- Tank Pumping

Setup the equation to find the amount of work done to pump liquid out the top of a tank.

- Hydrostatic Force

Setup the equation to find the Hydrostatic force exerted on the flat side of a tank. OR Find the Hydrostatic force of a flat plate being submerged in water.

- Center of Mass

Find the center of mass of a given region on the graph.
Chapter 2: Techniques of Integration

- Trig Integrals

Solve integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x) d x$ and $\int \tan ^{m}(x) \sec ^{n}(x) d x$.

- Trig Substitution

Use Pythagorean Theorem and SOH CAH TOA to perform a θ substitution.

- Partial Fractions

Decompose based on the 4 cases. Be able to find the constants and integrate.

- Numerical Integration

Midpoint, Trapezoid, and Simpson's Rule. Find the error bound for the approximations.

- Improper Integrals

Locate any asymptotes or discontinuities and use proper mathematical notation to evalutate the integral.

Chapter 3: Differential Equations

- Diff. Eq. Intro

Know definition of Diff. Eq. and it's order. Verify if a given function is a solution to the Diff. Eq.

- Slope Fields

Match a Diff. Eq. to it's slope field.

- Euler's Method

Use the main formula to approximate a solution to an IVP.

- Separation of Variables

Find the General solution to a separable Diff. Eq. Solve an Initial Value Problem.

- Applications

Orthogonal Trajectories, Exponential Growth/Decay, Logistic Model, Newton's Heating \mathcal{E}° Cooling, Tank Mixing

- 2nd Order Linear Homogeneous

Find the auxiliary equation. Use the 3 cases to find the general solution. Be able to solve an IVP

- 2nd Order Linear Non-Homogeneous

Find the general solution.
Note: Springs \& Circuits will NOT be on the exam.
Chapter 4: Sequences \& Series

- Sequences

Write a sequence in closed or recursive form. Use L'Hopital's and Squeeze Theorem to determine convergence/divergence.

- Intro to Series

Write a series using summation notation. Know the main examples of series and their convergence/divergence results.

- Series Tests for Convergence/Divergence

Divergence Test, Direct Comparison, Limit Comparison, Integral Test, Alternating Series, Absolute Convergence, \mathcal{B} Ratio Test. Approximate series with the Integral and Alternating Series.

- Power Series

Find interval and radius of convergence, and the center of the power series.

- Functions as Power series

Write rational functions as power series. Take integrals/derivatives using power series. Identify interval and radius of convergence.

- Taylor \& Maclaurin Series

Derive the Taylor or Maclaurin series for functions. Manipulate the main examples of Maclaurin series to find a Maclaurin series.

- Taylor Polynomial Find the Taylor polynomial and estimate it's error.

EXERCISES FOR 4.7-4.9:

(Note: See the previous Chapters' Study Guides for review questions on the material you've been tested on already)

1. (a) Find the power series representation for $f(x)=\frac{5 x}{1-3 x^{5}}$
(b) Use the series to evaluate $f^{\prime}(x)$
2. (a) Find the power series representation for $g(x)=\frac{x^{4}}{9+x^{2}}$
(b) Use the series to evaluate $\int g(x) d x$
3. (a) Derive a Maclaurin series for $\cos (x)$ (This means show all the work, no shortcuts!)
(b) Find the Maclaurin series of $\cos (3 x)$
(c) Use the Maclaurin series to evaluate $\int \frac{1}{x^{2}} \cos (3 x) d x$
4. Derive a Taylor series for $f(x)=\sin (x)$ centered at $a=\frac{\pi}{2}$
5. (a) Derive a Maclaurin series for e^{x}
(b) Find the Maclaurin series of $e^{\sqrt{x}}$
(c) Use the Maclaurin series to evaluate $\int e^{\sqrt{x}} d x$
6. Find the Taylor series for $f(x)=\frac{1}{x}$ centered at $a=1$.
7. Use the Binomial series to expand the function as a power series. State the radius of convergence.
(a) $(4+x)^{-1 / 3}$
(b) $\frac{x}{\sqrt{1-x^{2}}}$
(c) $\sqrt[4]{2-x}$
(d) $\sqrt[5]{7+x}$
8. Find $T_{2}(x)$ for $f(x)=\sec (x)$ at $a=0$.
9. (a) Find $T_{4}(x)$ for $f(x)=\frac{1}{\sqrt{x}}$ at $a=1$.
(b) Approximate $\frac{1}{\sqrt{2}}$ with $T_{4}(x)$
10. (a) Find $T_{3}(x)$ of $f(x)=e^{x}$ at $a=-2$.
(b) For $-2.1 \leq x \leq-1.9$ estimate $\left|R_{3}\right|$.

Solutions:

1. (a) $\sum_{n=0}^{\infty} 5\left(3^{n}\right) x^{5 n+1}$
(b) $\sum_{n=0}^{\infty} 5(5 n+1)\left(3^{n}\right) x^{5 n}$
2. (a) $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{9}\right)^{n+1} x^{2 n+4}$
(b) $\sum_{n=0}^{\infty} \frac{1}{2 n+5}(-1)^{n}\left(\frac{1}{9}\right)^{n+1} x^{2 n+5}+C$
3. (a) $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
(b) $\cos (3 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n}}{(2 n)!}$
(c) $\int \frac{1}{x^{2}} \cos (3 x) d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n-1}}{(2 n)!(2 n-1)}$
4. $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}$
5. (a) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{(n)!}$
(b) $e^{\sqrt{x}}=\sum_{n=0}^{\infty} \frac{x^{n / 2}}{(n)!}$
(c) $\int e^{\sqrt{x}} d x=\sum_{n=0}^{\infty} \frac{x^{n / 2+1}}{(n)!\left(\frac{n}{2}+1\right)}$
6. $\frac{1}{x}=\sum_{n=0}^{\infty}(x-1)^{n}(-1)^{n}$
7. (a) $4^{-1 / 3} \sum_{n=0}^{\infty}\binom{-\frac{1}{3}}{n}\left(\frac{x}{4}\right)^{n}$ and $R=4$.
(b) $x \sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(-x^{2}\right)^{n}$ and $R=1$.
(c) $2^{1 / 4} \sum_{n=0}^{\infty}\binom{\frac{1}{4}}{n}\left(-\frac{x}{2}\right)^{n}$ and $R=2$.
(d) $7^{1 / 5} \sum_{n=0}^{\infty}\binom{\frac{1}{5}}{n}\left(\frac{x}{7}\right)^{n}$.
8. $T_{2}(x)=1+\frac{x^{2}}{2}$
9. (a) $T_{4}(x)=1-\frac{1}{2}(x-1)+\frac{3}{4(2!)}(x-1)^{2}-\frac{15}{8(3!)}(x-1)^{3}+\frac{(15)(7)}{16(4!)}(x-1)^{4}$
(b) $\frac{1}{\sqrt{2}} \approx 1-\frac{1}{2}+\frac{3}{4(2!)}-\frac{15}{8(3!)}+\frac{(15)(7)}{16(4!)}$
10. (a) $T_{3}(x)=e^{-2}+e^{-2}(x+2)+\frac{e^{-2}}{2!}(x+2)^{2}+\frac{e^{-2}}{3!}(x+2)^{3}$
(b) $\left|R_{3}\right| \leq \frac{e^{-1.9}}{4!}(0.1)^{4}$
